Forage-Fish Management in the United States

Author(s):  
John J. Ney
2021 ◽  
Vol 8 ◽  
Author(s):  
Kristen A. Anstead ◽  
Katie Drew ◽  
David Chagaris ◽  
Amy M. Schueller ◽  
Jason E. McNamee ◽  
...  

Atlantic menhaden (Brevoortia tyrannus) support the largest fishery by volume on the United States East Coast, while also playing an important role as a forage species. Managers’ and stakeholders’ increasing concerns about the impact of Atlantic menhaden harvest on ecosystem processes led to an evolution in the assessment and management of this species from a purely single-species approach to an ecosystem approach. The first coastwide stock assessment of Atlantic menhaden for management used a single-species virtual population analysis (VPA). Subsequent assessments used a forward projecting statistical catch-at-age framework that incorporated estimates of predation mortality from a multispecies VPA while analytical efforts continued toward the development of ecosystem models and explicit ecological reference points (ERPs) for Atlantic menhaden. As an interim step while ecosystem models were being developed, a series of ad hoc measures to preserve Atlantic menhaden biomass for predators were used by managers. In August 2020, the Atlantic States Marine Fisheries Commission formally adopted an ecological modeling framework as a tool to set reference points and harvest limits for the Atlantic menhaden that considers their role as a forage fish. This is the first example of a quantitative ecosystem approach to setting reference points on the United States Atlantic Coast and it represents a significant advance for forage fish management. This case study reviews the history of Atlantic menhaden stock assessments and management, outlines the progress on the current implementation of ERPs for this species, and highlights future research and management needs to improve and expand ecosystem-based fisheries management.


Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


2001 ◽  
Vol 15 (01) ◽  
pp. 53-87 ◽  
Author(s):  
Andrew Rehfeld

Every ten years, the United States “constructs” itself politically. On a decennial basis, U.S. Congressional districts are quite literally drawn, physically constructing political representation in the House of Representatives on the basis of where one lives. Why does the United States do it this way? What justifies domicile as the sole criteria of constituency construction? These are the questions raised in this article. Contrary to many contemporary understandings of representation at the founding, I argue that there were no principled reasons for using domicile as the method of organizing for political representation. Even in 1787, the Congressional district was expected to be far too large to map onto existing communities of interest. Instead, territory should be understood as forming a habit of mind for the founders, even while it was necessary to achieve other democratic aims of representative government.


Sign in / Sign up

Export Citation Format

Share Document